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Can swell increase the number of freak waves
in a wind sea?

ODIN GRAMSTAD AND KARSTEN TRULSEN†
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway

(Received 10 March 2009; revised 14 November 2009; accepted 14 November 2009;

first published online 19 March 2010)

The effect of a swell on the statistical distribution of a directional short-wave field is
investigated. Starting from Zakharov’s spectral formulation, we derive a new modified
nonlinear Schrödinger equation appropriate for the nonlinear evolution of a narrow-
banded spectrum of short waves influenced by a swell. The swell-modified equation
is solved analytically to yield an extended version of the result of Longuet-Higgins &
Stewart (J. Fluid Mech., vol. 8, no. 4, 1960, pp. 565–583) for the modulation of a short
wave riding on a longer wave. Numerical Monte Carlo simulations of the long-term
evolution of a spectrum of short waves in the presence of a monochromatic swell are
employed to extract statistical distributions of freak waves among the short waves.
We find evidence that a realistic short-crested wind sea can on average experience a
small increase in freak wave probability because of a swell provided the swell is not
orthogonal to the wind waves. For orthogonal swell and wind waves we find evidence
that there is almost no significant change in the probability of freak waves in the
wind sea. If the short waves are unrealistically long crested, such that the Benjamin–
Feir index serves as indicator for freak waves (Gramstad & Trulsen, J. Fluid Mech.,
vol. 582, 2007, pp. 463–472), it appears that the swell has much smaller relative
influence on the probability of freak waves than in the short-crested case.

1. Introduction
It has been speculated that the interaction of a swell system and a wind-sea system

can modify the probability of freak waves in comparison with either one of the wave
systems alone. Recent analyses of ship accidents take such interactions into account
(Toffoli et al. 2005) without leading to conclusions regarding the possible influence
of such interaction on the probability of freak waves. In a case study of a crossing
swell and wind sea, Lechuga (2006) speculated that an angle of approximately 90◦

between the two wave systems precluded the possibility that the swell could enhance
freak wave occurrence in the wind sea.

We shall limit attention to situations in which the swell and the wind sea have
different time and length scales, quite different from the crossing seas with identical
periods considered by Fuhrman, Madsen & Bingham (2006), Onorato, Osborne &
Serio (2006) and Shukla et al. (2006). We are then left with two opposite regimes of
interaction that must be distinguished. For very long interaction times and lengths,
there is evidence that a wind sea may modify a swell (Masson 1993) and may enhance
the occurrence of freak swell waves (Tamura, Waseda & Miyazawa 2009) through
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resonant transfer of energy from the wind sea to the swell. This may happen when
the wind waves and the swell have small separation in wave periods. However, in the
current paper we are concerned with the opposite regime of rather short interaction
times and lengths, with short waves and swell having significantly different wave
periods, such that nonlinear energy transfer between short and long waves becomes
unimportant. The swell can then influence the short waves through modulation of
amplitude and phase, and these modulations may in turn influence the nonlinear
evolution of the wind waves. The focus here is to investigate whether such a situation
can lead to changes in the statistical properties of the wind waves and in particular
if it makes freak waves more or less probable.

Longuet-Higgins & Stewart (1960) derived a theory for a short linear gravity wave
riding on a much longer linear gravity wave. They predicted that the short wave will
have locally shorter wavelength and larger amplitude close to the crests of the long
wave and correspondingly longer wavelength and smaller amplitude near the troughs
of the long wave. Longuet-Higgins (1987) extended this theory, allowing the linear
short waves to ride on a finite-amplitude long wave. He predicted that the resulting
steepening of the short waves near the crests of the long wave could be significantly
enhanced.

Using a wave action approach Grimshaw (1988) considered short gravity–capillary
waves riding on a steep gravity wave. Craik (1988) used a Zakharov spectral
formulation for the interaction of long and short gravity waves. Both Grimshaw
(1988) and Craik (1988) used linearized equations to describe the short waves.
A general Hamiltonian account for the linear evolution of short waves on a
long wave of a general three-dimensional form was presented by Henyey et al.
(1988).

Extending further to allow the short waves to be weakly nonlinear, Zhang &
Melville (1990) derived a nonlinear Schrödinger (NLS) equation describing weakly
nonlinear short gravity waves riding on a longer finite-amplitude gravity wave. For
steady short waves, they anticipated less modulation of steepness and amplitude,
but more modulation of wavenumber, than compared with Longuet-Higgins (1987).
Later Zhang & Melville (1992) studied the stability of weakly nonlinear short waves
on finite-amplitude long waves. They found that the conventional Benjamin–Feir
instability was just the first in a series of unstable regions provoked by the long
wave; thus they anticipated enhanced modulational instability of short waves in the
presence of long waves.

Similar results were also obtained by Naciri & Mei (1992), who considered the
nonlinear evolution of short gravity waves on long rotational Gerstner waves,
Naciri & Mei (1993), who considered nonlinear evolution of irrotational short
waves on irrotational long waves, and Naciri & Mei (1994), who extended their
consideration to two-dimensional interaction of obliquely intersecting waves. In this
case the instability of the short wave due to oblique side bands was shown to
be enhanced by the presence of the long wave. However, the obliqueness becomes
important only when the steepness of the long wave is sufficiently large.

Recently Regev et al. (2008) showed that bound waves due to quadratic interaction
between short waves and swell may act as an inhomogeneous disturbance in the
form that is required for instability in Alber’s equation (Alber 1978). By numerical
integration of Alber’s equation they found enhanced freak wave probability as an
effect of this disturbance. The same amount of freak waves was however also found
by direct simulation of the cubic NLS equation without the presence of a swell. Their
investigation was limited to one horizontal dimension.
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Nonlinear modulations provoked by modulational instability are known to be
responsible for freak waves (Dysthe & Trulsen 1999; Akhmediev, Ankiewicz &
Taki 2009). As the bandwidth of the waves becomes larger, the modulational
instability will become weaker and eventually disappear (Alber 1978; Onorato et al.
2001; Janssen 2003; Onorato et al. 2004). This qualitative change of behaviour
has been parameterized by the Benjamin–Feir index (BFI) defined as the ratio of
steepness over bandwidth. The BFI is usually normalized such that values greater
than one imply the existence of modulational instabilities that can lead to freak
waves.

When considering three-dimensional waves it is found that as the crest length of
waves decreases, the freak wave intensity is reduced and BFI ceases to be a useful
parameter for freak wave intensity (Stansberg 1994; Onorato, Osborne & Serio 2002;
Socquet-Juglard et al. 2005; Waseda 2006; Onorato et al. 2009a ,b). Gramstad &
Trulsen (2007) found that for waves with characteristic crest lengths shorter than
about ten characteristic wavelengths the wave statistics is similar to the case of no
modulational instability regardless of the value of BFI.

In this paper, our goal is to investigate whether the presence of a swell changes
the extreme wave statistics for the short waves. There seems to be several different
mechanisms through which a swell might influence the statistics of the short waves.
First we have the swell-induced modulation of a linear monochromatic short wave
discussed by Longuet-Higgins & Stewart (1960), Longuet-Higgins (1987), Henyey
et al. (1988) and Zhang & Melville (1990). Second a weak swell may provoke the
modulational instability of the short waves as suggested by Regev et al. (2008). Third
a stronger swell may enhance the modulational instability of the short waves as found
by Zhang & Melville (1992) and Naciri & Mei (1992, 1994). Finally the swell might
affect the long term nonlinear evolution of the short-wave field, which is the main
focus of this paper.

In order to describe a swell-modified sea, we have derived an extension of the
Dysthe NLS equation suitable for describing the long-term evolution of directional
short deep-water gravity waves riding on swell of arbitrary direction on finite depth.
The equation is derived starting from a spectral, Zakharov-type, formulation. Details
of the derivation are given in § 2.

In §§ 3 and 4 some consequences of the swell-modified equation are investigated
under simplified conditions. First, in § 3 it is shown that an extended version of the
result of Longuet-Higgins & Stewart (1960) can be obtained from our swell-modified
equation. Then, in § 4, this result is used, under the assumption that the short waves
can be considered as linear, to find approximate statistical distributions of surface
and wave amplitude for a field of random short waves affected by a swell. According
to this analysis, it is found that the effect of the swell on the kurtosis and probability
of extreme waves is of third order in the wave steepness of the short waves, and thus
a very small effect.

To further include all effects described by the swell-modified equation, numerical
simulations of the full swell-modified NLS model was used in a Monte Carlo approach
from which we have extracted statistics of extreme waves (Gramstad 2006). Results
from the numerical simulations are presented in § 5.

In order to cover different regimes with respect to BFI and crest length, four
different types of wind seas, with different BFIs and crest lengths, are considered.
Furthermore, we also check the dependence of the wave statistics with respect to the
relative angle of wave propagation of swell and wind sea by considering different
directions of the swell relative to the short waves.
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The results from the Monte Carlo simulations of the nonlinear long-term evolution
reveal that the freak wave statistics of wind waves can be significantly more affected
by a swell than suggested through the linear modulation mechanism of Longuet-
Higgins & Stewart (1960). We find evidence that a realistically short-crested wind
sea can experience an increase in freak wave probability because of a swell provided
the swell is not orthogonal to the wind waves. For orthogonal swell and wind
waves we find evidence that there is hardly any change in the probability of freak
waves in the wind sea regardless of its crest length. On the other hand, if the
short waves are unrealistically long crested such that the BFI serves as indicator
for freak waves (Gramstad & Trulsen 2007), it appears that the swell has much
smaller relative influence on the probability of freak waves than in the short-crested
case.

2. Derivation of swell-modified equations
In this section equations describing a sea state consisting of a system of short

waves propagating on top of a system of much longer waves (swell) are derived.
The final result is a swell-modified NLS equation, which describes the evolution of a
narrow-band wave field influenced by a system of long waves. The resulting equation
was previously derived by Gramstad (2006) using a multiple-scale perturbation
approach starting from the Euler equations. Here an alternative derivation based
on Zakharov’s spectral formulation (see e.g. Zakharov 1968; Krasitskii 1994) is
presented. This method has some advantages in terms of complexity, and it provides
some intermediate results which may be useful in some contexts. The present
approach is in some respects similar to the approach of Craik (1988), who also
considered the interaction of a long and short wave using Zakharov’s spectral
formulation.

Both the short waves and the swell are assumed to be described by potential
theory, and the following notation is introduced for the surface elevation and
velocity potential of the short waves and the swell, respectively: ηs(x, t), φs(x, z, t)
and ηl(x, t), φl(x, z, t). Hence, the full surface elevation and velocity potential are
η = ηs + ηl and φ = φs + φl , respectively.

The characteristic spatial scales for the short waves and the swell are described
by the wavenumbers ks and K for the waves and the swell respectively, where
it is assumed that K/ks � 1. Similarly, for the temporal scales we introduce the
frequencies ωs and Ω , where Ω/ωs � 1 is assumed. Both the short waves and
the swell are assumed to be weakly nonlinear, i.e. ksas � 1, Kal � 1, with as and al

the amplitudes,

as =

√
2(ηs − ηs)2, al =

√
2(ηl − ηl)2, (2.1)

where the overbar represents averaging. More specifically, letting ε = ksas be the wave
steepness of the short waves, we make the scaling assumptions

as

al

= O(1),
K

ks

= O(ε),
Ω

ωs

= O(ε1/2), (2.2)

which correspond to the steepness of the swell being Kal = O(ε2).
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2.1. A swell-modified Zakharov formulation

The starting point of the derivation is the set of equations in the form

η̂t − qψ̂ = 2

∫
E

(3)
−0,1,2ψ̂1η̂2δ0−1−2 dk1,2 + 2

∫
E

(4)
−0,1,2,3ψ̂1η̂2η̂3δ0−1−2−3 dk1,2,3, (2.3a)

ψ̂t + gη̂ = −
∫

E
(3)
1,2,−0ψ̂1ψ̂2δ0−1−2 dk1,2 − 2

∫
E

(4)
1,2,3,−0ψ̂1ψ̂2η̂3δ0−1−2−3 dk1,2,3. (2.3b)

These equations are given in Krasitskii (1994) and describe the nonlinear evolution

of the variables η̂(k, t) and ψ̂(k, t); the spatial Fourier transforms of the free surface
and the velocity potential at the free surface, respectively. Here, k = |k| and q(k) =

k tanh (kh). Furthermore, η̂t and ψ̂t denote the partial derivative with respect to
time of η̂ and ψ̂ respectively. We have adopted a compact subscript notation, e.g.
E

(3)
0,1,2 = E(3)(k0, k1, k2), δ0−1−2 = δ(k0 − k1 − k2) and dk1,2 = dk1dk2. However, the

complete notation is also used whenever it is convenient. The kernel functions E
(3)
0,1,2

and E
(4)
0,1,2,3 can be found in Krasitskii (1994).

The surface elevation and velocity potential of the waves and the swell could be
expressed as the following Fourier transforms:

ηs,l(x, t) =
1

2π

∫
η̂s,l(k, t)eik·x dk, φs,l(x, z, t) =

1

2π

∫
φ̂s,l(k, t)

cosh [k(z + h)]

sinh [kh]
eik·x dk.

(2.4)

Since the surface elevation and velocity potential are real functions it is clear that
η̂s,l(k, t) = η̂s,l∗(−k, t) and φ̂s,l(k, t) = φ̂s,l∗(−k, t). Further, we define the surface
potentials

ψl0 = φl(z = ηl), ψs = φs(z = ηs + ηl), ψl = φl(z = ηs + ηl). (2.5)

We note that the full surface potential is ψ = φ(z = η) = ψl + ψs .
If we make use of the separation between the short waves and the swell, (2.3a) and

(2.3b) can be written as

η̂s
t − qψ̂s + η̂l

t − qψ̂l = 2

∫
E

(3)
−0,1,2(ψ̂

s
1 + ψ̂ l

1)(η̂
s
2 + η̂l

2)δ0−1−2 dk1,2

+ 2

∫
E

(4)
−0,1,2,3(ψ̂

s
1 + ψ̂ l

1)(η̂
s
2 + η̂l

2)(η̂
s
3 + η̂l

3)δ0−1−2−3 dk1,2,3, (2.6a)

ψ̂s
t + gη̂s + ψ̂ l

t + gη̂l = −
∫

E
(3)
1,2,−0(ψ̂

s
1 + ψ̂ l

1)(ψ̂
s
2 + ψ̂ l

2)δ0−1−2 dk1,2

− 2

∫
E

(4)
1,2,3,−0(ψ̂

s
1 + ψ̂ l

1)(ψ̂
s
2 + ψ̂ l

2)(η̂
s
3 + η̂l

3)δ0−1−2−3 dk1,2,3. (2.6b)

We assume that the swell exists independent of the short waves; i.e. η̂l and ψ̂ l0 satisfy
(2.3a) and (2.3b) separately. In order to make use of this assumption, we note that
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Taylor expansion of ψl = φl(z = ηs + ηl) gives

ψl = φl(z = ηl) + ηs ∂φl

∂z

∣∣∣∣
z=0

+
ηs

2

(
ηs + 2ηl

) ∂2φl

∂z2

∣∣∣∣
z=0

+ · · ·. (2.7)

By taking the Fourier transform of (2.7), we obtain

ψ̂ l = ψ̂ l0 +
1

2π

∫
k1φ̂

l
1η̂

s
2δ0−1−2 dk1,2

+
1

(2π)2

∫
k2

1

2
coth [k1h]φ̂l

1η̂
s
2(η̂

s
3 + 2η̂l

3)δ0−1−2−3 dk1,2,3 + · · ·. (2.8)

Similarly, one can also show that

ψ̂ l0 = coth [kh]φ̂l
0 +

1

2π

∫
k1φ̂

l
1η̂

l
2δ0−1−2 dk1,2

+
1

(2π)2

∫
k2

1

2
coth [k1h]φ̂l

1η̂
l
2η̂

l
3δ0−1−2−3 dk1,2,3 + · · ·. (2.9)

We now insert (2.8) into (2.6a) and (2.6b) and make use of the assumption that the
swell exists independent of the short waves. We also make use of the introductory
scaling assumptions and only account for terms up to third order in the wave
steepness, ε, of the short waves. This gives

η̂s
t − qψ̂s − q

2π

∫
k1φ̂

l
1η̂

s
2δ0−1−2 dk1,2 = 2

∫
E

(3)
−0,1,2

[
ψ̂s

1 η̂
s
2 + ψ̂s

1 η̂
l
2 + ψ̂

l0
1 η̂s

2

]
δ0−1−2 dk1,2

+ 2

∫
E

(4)
−0,1,2,3ψ̂

s
1 η̂

s
2η̂

s
3δ0−1−2−3 dk1,2,3, (2.10a)

ψ̂s
t + gη̂s+

1

2π

∫
k1

[
φ̂l

1η̂
s
2

]
t
δ0−1−2 dk1,2 = −

∫
E

(3)
1,2,−0

[
ψ̂s

1ψ̂
s
2 + ψ̂s

1ψ̂
l0
2 + ψ̂

l0
1 ψ̂s

2

]
δ0−1−2 dk1,2

− 2

∫
E

(4)
1,2,3,−0ψ̂

s
1ψ̂

s
2 η̂

s
3δ0−1−2−3 dk1,2,3. (2.10b)

With use of (2.9) this may be rewritten in the form

η̂s
t − qψ̂s = 2

∫
E

(3)
−0,1,2ψ̂

s
1 η̂

s
2δ0−1−2 dk1,2 + 2

∫
E

(4)
−0,1,2,3ψ̂

s
1 η̂

s
2η̂

s
3δ0−1−2−3 dk1,2,3

+ 2

∫
Ẽ

(3)
−0,1,2 coth [k1h]φ̂l

1η̂
s
2δ0−1−2 dk1,2 + 2

∫
E

(3)
−0,1,2ψ̂

s
1 η̂

l
2δ0−1−2 dk1,2, (2.11a)

ψ̂s
t + gη̂s = −

∫
E

(3)
1,2,−0ψ̂

s
1ψ̂

s
2δ0−1−2 dk1,2 − 2

∫
E

(4)
1,2,3,−0ψ̂

s
1ψ̂

s
2 η̂

s
3δ0−1−2−3 dk1,2,3

− 2

∫
Ẽ

(3)
1,2,−0 coth [k2h]ψ̂s

1 φ̂
l
2δ0−1−2 dk1,2 +

1

2π

∫
ω2

1η̂
l
1η̂

s
2δ0−1−2 dk1,2, (2.11b)

where Ẽ
(3)
0,1,2 = E

(3)
0,1,2 + q0q1/4π = −k0 · k1/4π.

We now introduce the complex amplitude function a(k, t),

η̂s(k, t) = M (k)
[
a(k, t) + a∗(−k, t)

]
, ψ̂s(k, t) = −iN (k)

[
a(k, t) − a∗(−k, t)

]
,

(2.12)
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or alternatively a(k, t) = N (k)η̂s(k, t) + iM (k)ψ̂s(k, t), where

M (k) =

[
ω(k)

2g

]1/2

, N (k) =

[
g

2ω(k)

]1/2

, ω(k) =
√

gk tanh (kh). (2.13)

Now, by combining (2.11a) and (2.11b), we obtain the following equation for a(k, t):

i
∂a0

∂t
− ω0a0 =

∫
U

(1)
0,1,2a1a2δ0−1−2 dk1,2 + 2

∫
U

(1)
2,1,0a

∗
1a2δ0+1−2 dk1,2

+

∫
U

(3)
0,1,2a

∗
1a

∗
2δ0+1+2 dk1,2 +

∫
V

(1)
0,1,2,3a1a2a3δ0−1−2−3 dk1,2,3

+

∫
V

(2)
0,1,2,3a

∗
1a2a3δ0+1−2−3 dk1,2,3 + 3

∫
V

(2)
3,2,1,0a

∗
1a

∗
2a3δ0+1+2−3 dk1,2,3

+

∫
V

(4)
0,1,2,3a

∗
1a

∗
2a

∗
3δ0+1+2+3 dk1,2,3 + 4i

∫
M1S

(1)
0,1,2 coth [k1h]φ̂l

1a2δ0−1−2 dk1,2

+ 4

∫
N1S

(2)
0,1,2η̂

l
1a2δ0−1−2 dk1,2 + 4i

∫
M1S

(1)
0,1,2 coth [k1h]φ̂l

1a
∗
2δ0−1+2 dk1,2

+ 4

∫
N1S

(3)
0,1,2η̂

l
1a

∗
2δ0−1+2 dk1,2. (2.14)

The first seven integrals on the right-hand side are the same as in the ‘wave-only’
problem, and the functions U (1), U (3), V (1), V (2) and V (4) can be found in Krasitskii
(1994). The last four integrals are due to the wave–swell interaction, and the functions
S(1), S(2) and S(3) are found to be

S
(1)
0,1,2 = Ũ2,1,−0 − Ũ−0,1,2, S

(2)
0,1,2 = −U−0,2,1 − 1

4π
M0M1M2ω

2
1,

S
(3)
0,1,2 = U0,2,1 − 1

4π
M0M1M2ω

2
1,

where Ũ0,1,2 = −N0N1M2Ẽ
(3)
0,1,2.

Now, in light of Krasitskii (1994), we attempt to remove terms in (2.14) that
correspond to interactions that are far from resonance, by employing a procedure
similar to the canonical transformation described in Krasitskii (1994). The result will
be an equation in the ‘free-wave’ amplitude function b(k, t), which is assumed to be
related to a(k, t) through the following relation:

a0 = b0 +

∫
C

(1)
0,1,2b1b2δ0−1−2 dk1,2 +

∫
C

(2)
0,1,2b

∗
1b2δ0+1−2 dk1,2 +

∫
C

(3)
0,1,2b

∗
1b

∗
2δ0+1+2 dk1,2

+

∫
N1F

(1)
0,1,2η̂

l
1b2δ0−1−2 dk1,2 + i

∫
M1F

(2)
0,1,2 coth [k1h]φ̂l

1b2δ0−1−2 dk1,2

+

∫
N1F

(3)
0,1,2η̂

l
1b

∗
2δ0−1+2 dk1,2 + i

∫
M1F

(4)
0,1,2 coth [k1h]φ̂l

1b
∗
2δ0−1+2 dk1,2 + · · ·. (2.15)

We have omitted the details about how to treat the third-order terms in (2.14), since
this involves lengthy calculations that are covered in Krasitskii (1994). Introducing
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(2.15) into (2.14) and collecting the terms give

i
∂b0

∂t
− ω0b0 =

∫
[U (1)

0,1,2 + C
(1)
0,1,2Δ0−1−2]b1b2δ0−1−2 dk1,2

+

∫
[2U

(1)
2,1,0 + C

(2)
0,1,2Δ0+1−2]b

∗
1b2δ0+1−2 dk1,2

+

∫
[U (3)

0,1,2 + C
(3)
0,1,2Δ0+1+2]b

∗
1b

∗
2δ0+1+2 dk1,2

+ i

∫
[4S

(1)
0,1,2 + F

(2)
0,1,2Δ0−2 − F

(1)
0,1,2ω1]M1 coth [k1h]φ̂l

1b2δ0−1−2 dk1,2

+

∫
[4S

(2)
0,1,2 + F

(1)
0,1,2Δ0−2 − F

(2)
0,1,2ω1]N1η̂

l
1b2δ0−1−2 dk1,2

+ i

∫
[4S

(1)
0,1,2 + F

(4)
0,1,2Δ0+2 − F

(3)
0,1,2ω1]M1 coth [k1h]φ̂l

1b
∗
2δ0−1−2 dk1,2

+

∫
[4S

(3)
0,1,2 + F

(3)
0,1,2Δ0+2 − F

(4)
0,1,2ω1]N1η̂

l
1b

∗
2δ0−1−2 dk1,2, (2.16)

where Δ0−1−2 = ω0 − ω1 − ω2, Δ0+1+2 = ω0 + ω1 + ω2 and so on. Here, we have used
the following relations valid to leading order:

φ̂l
t = −g tanh [kh]η̂l, η̂t = kφ̂l.

An attempt to remove all terms on the right-hand side of (2.16) gives the following
choices for C

(1,2,3)
0,1,2 and F

(1,2,3,4)
0,1,2 :

C
(1)
0,1,2 = −U

(1)
0,1,2Δ

−1
0−1−2, C

(2)
0,1,2 = −2U

(1)
2,1,0Δ

−1
0+1−2, C

(3)
0,1,2 = −U

(3)
0,1,2Δ

−1
0+1+2,

F
(1)
0,1,2 = −4

ω1S
(1)
0,1,2 + Δ0−2S

(2)
0,1,2

Δ2
0−2 − ω2

1

, F
(2)
0,1,2 = −4

ω1S
(2)
0,1,2 + Δ0−2S

(1)
0,1,2

Δ2
0−2 − ω2

1

,

F
(3)
0,1,2 = −4

ω1S
(1)
0,1,2 + Δ0+2S

(3)
0,1,2

Δ2
0+2 − ω2

1

, F
(4)
0,1,2 = −4

ω1S
(3)
0,1,2 + Δ0+2S

(1)
0,1,2

Δ2
0+2 − ω2

1

.

It is clear that these transformations are only valid if the denominators are never zero.
It can be argued that because of the form of the gravity wave dispersion relation,
the equations k0 ± k1 ± k2 = 0, ω0 ± ω1 ± ω2 = 0 have no solutions, and thus the
removal of second-order terms is valid. However, because of the presence of the long
wave, quadratic interactions of a long and a short wave can have periodicity close
to the one of the linear short wave, and the removal of these terms becomes more
suspicious. This fact is seen in the form of the functions F

(1)
0,1,2 and F

(2)
0,1,2, where the

denominator has a form that can attain values very close to zero when the long-wave
frequency becomes small. This requires us to keep the integrals involving S

(1)
0,1,2 and

S
(2)
0,1,2 in (2.14), i.e. setting F

(1)
0,1,2 = F

(2)
0,1,2 = 0 in (2.15). Thus the resulting reduced

equation is in the form

i
∂b0

∂t
= ω0b0 +

∫
Ṽ

(2)
0,1,2,3b

∗
1b2b3δ0+1−2−3 dk1,2,3 + 4i

∫
M1S

(1)
0,1,2 coth [k1h]φ̂l

1b2δ0−1−2 dk1,2

+ 4

∫
N1S

(2)
0,1,2η̂

l
1b2δ0−1−2 dk1,2. (2.17)

The first part of this equation is the standard Zakharov equation, and the function
Ṽ

(2)
0,1,2,3 can be found in for example Krasitskii (1994). The equation can be considered
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as a swell-modified version of the Zakharov equation, and (2.17) might be convenient
in some applications, although it here merely acts as a step in the derivation of a
swell-modified NLS equation.

2.2. A swell-modified nonlinear Schrödinger equation

Starting from (2.17) and assuming that the short waves are narrow banded we derive
a swell-modified version of the broader bandwidth modified NLS equation (BMNLS
equation) of Trulsen & Dysthe (1996).

We will mainly follow the approach of Stiassnie (1984), who showed that the Dysthe
NLS equation (modified NLS equation) could be obtained as a narrow-band limit
of the Zakharov equation. In the following the water depth is assumed to be large,
so that the short waves can be considered deep-water waves. More specifically, we
will assume (ksh)−1 = O(ε). This, however, still allows the swell to be on intermediate
depth, (Kh)−1 = O(1).

Assuming that the energy of the short waves is concentrated around ks = (ks, 0)
we rewrite the wave vectors as k = ks + χ , where χ = (χ, λ) and |χ |/ks = O(ε1/2).
This scaling assumption for the bandwidth is the same as in Trulsen & Dysthe (1996).
Similarly, for the swell we can write K = (Kx, Ky), where it follows from the scaling
assumptions (2.2) that K/ks = O(ε).

We now realize that the surface elevation of the short waves can be written in the
form

ηs(x, t) =
1

2

[
1

2π

∫
B̂(χ )eiχ ·xei(ksx−ωs t) dχ + ∗

]
=

1

2

[
B(x)ei(ksx−ωs t) + ∗

]
,

where B̂(χ , t) = 2M (ks +χ)b(ks +χ)eiωs t . It is clear that B is actually a variable that
the NLS equations are commonly expressed in. Further we introduce the variable B̂

as well as the wavenumber separation indicated above into (2.17). This gives

∂B̂0

∂t
+ i(ω0 − ωs)B̂0 = −2i

∫
M0N1N2N3Ṽ

(2)
0,1,2,3B̂

∗
1 B̂2B̂3δ0+1−2−3 dχ1,2,3

+ 8

∫
M0M1N2S

(1)
0,1,2 coth [K1h]φ̂l

1B̂2δ0−1−2 dK 1dχ 2

− 8i

∫
M0N1N2S

(2)
0,1,2η̂

l
1B̂2δ0−1−2 dK 1dχ2. (2.18)

Taking the inverse Fourier transform of this equation with respect to χ0 gives

∂B

∂t
+ D(B) +

2i

2π

∫
M3+2−1N1N2N3Ṽ

(2)
3+2−1,1,2,3B̂

∗
1 B̂2B̂3e

−iχ1·xeiχ2·xeiχ3·x dχ1,2,3

− 1

(2π)2

∫
16πM1+2M1N2S

(1)
1+2,1,2 coth [K1h]φ̂l

1B̂2e
iK 1·xeiχ2·x dK 1dχ 2

+
1

(2π)2

∫
16πiM1+2N1N2S

(2)
1+2,1,2η̂

l
1B̂2e

iK 1·xeiχ2·x dK 1dχ2, (2.19)

where D(B) denotes the linear dispersive terms which are obtained by expanding
ω(ks + χ) in a Taylor series around ks . The first integral on the right-hand side of
(2.19) is the standard term in the Zakharov equation, and the procedure of inverting
this term in order to get the nonlinear terms in the modified NLS equation is basically
given in Stiassnie (1984). The last two terms, however, are new and will be treated in
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more detail. Taylor expansion of the kernel functions gives

−16πM1+2M1N2S
(1)
1+2,1,2 = −ksKx − χKx − λKy − 3

4
K2

x − 1

2
K2

y + · · ·,

16πiM1+2N1N2S
(2)
1+2,1,2 = − iks

2ωs

Ω2 − 1

4ωs

Ω2χ + · · ·.

By using the leading-order relation Ω2η̂l = −η̂l
t t , the above-given Taylor expansions

allow us to calculate the remaining integrals in (2.19). Together with the results of
Stiassnie (1984), we obtain the swell-modified BMNLS equation in the form

ks

ωs

∂B

∂t
+

1

2

∂B

∂x
+

i

8ks

∂2B

∂x2
− i

4ks

∂2B

∂y2
− 1

16k2
s

∂3B

∂x3
+

3

8k2
s

∂3B

∂x∂y2
− 5i

128k3
s

∂4B

∂x4

+
15i

32k3
s

∂4B

∂x2∂y2
− 3i

32k3
s

∂4B

∂y4
+

7

256k4
s

∂5B

∂x5
− 35

64k4
s

∂5B

∂x3∂y2
+

21

64k4
s

∂5B

∂x∂y4
+

ik3
s

2
|B|2B

+
3k2

s

2
|B|2 ∂B

∂x
+

k2
s

4
B2 ∂B∗

∂x
+

ik2
s

ωs

B
∂φ̄

∂x
+

ik2
s

ωs

B
∂φl

∂x
+

ks

ωs

∂B

∂x

∂φl

∂x
+

ks

ωs

∂B

∂y

∂φl

∂y

+
3ks

4ωs

B
∂2φl

∂x2
+

ks

2ωs

B
∂2φl

∂y2
+

ik2
s

2ω2
s

B
∂2ηl

∂t2
+

ks

4ω2
s

∂B

∂x

∂2ηl

∂t2
= 0, z = 0, (2.20)

where φ̄ is governed by the equations

∂2φ̄

∂x2
+

∂2φ̄

∂y2
+

∂2φ̄

∂z2
= 0 , z < 0, (2.21a)

ks

ω2
s

∂2φ̄

∂t2
+

∂φ̄

∂z
=

ωs

2

∂ |B|2
∂x

+
ωs

8ks

(
iB

∂2B∗

∂x2
+ 2iB

∂2B∗

∂y2
+ ∗

)
, z = 0, (2.21b)

∂φ̄

∂z
= 0 , z → −∞ . (2.21c)

Equations (2.20)–(2.21c) have previously been derived by Gramstad (2006) using a
multiple-scale perturbation approach starting from the Euler equations.

In addition to the equations above, we also need an equation for the swell. Basically,
the valid equations are the basic equations (2.3a) and (2.3b) applied on the swell only.
However, it is clear that under the current scaling assumptions it is sufficient to
consider the leading-order solution for the swell. Thus, the swell can be chosen in the
form

φl(x, z, t) =
1

2π

∫
F (k)

ω(k)

ik

cosh [k(z + h)]

sinh [kh]
ei(k·x−ω(k)t) dk + ∗, (2.22a)

ηl(x, t) =
1

2π

∫
F (k)ei(k·x−ω(k)t) dk + ∗, (2.22b)

for some suitable F (k).
From the solution of the system (2.20)–(2.22b) the full surface elevation can be

obtained as

η(x, t) = η̄ +
1

2

[
(B + B̃)ei(ksx−ωs t) + B2e

2i(ksx−ωs t) + B3e
3i(ksx−ωs t) + · · · + ∗

]
+ ηl. (2.23)

Here η̄, B2 and B3 are bound wave contributions from quadratic and cubic interactions
between short waves, while B̃ is the bound contributions arising from quadratic
interactions between long and short waves. All the bound contributions can be found
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from transformation (2.15). Since η̄, B2 and B3 take the same form as in the no-swell
case, we here only provide details about how to obtain B̃ from (2.15). By assuming
narrow bandwidth in the same manner as before, it is clear that

B̃ =
1

(2π)2

∫
4πM1+2N1N2F

(3)
−1−2,−1,2η̂

l
1B̂2e

i(K 1+χ2)·x dK 1dχ 2

− i

(2π)2

∫
4πM1+2M1N2F

(4)
−1−2,−1,2 coth [K1h]φ̂l

1B̂2e
i(K 1+χ2)·x dK 1dχ2,

and by Taylor expansion we find, valid to O(ε3),

B̃ = − ks

4ω2
s

B
∂2ηl

∂t2
. (2.24)

The other bound wave contributions do not depend explicitly on the swell and can
therefore be inferred from Trulsen & Dysthe (1996):

η̄ = − ks

ω2
s

∂φ̄

∂t
− 1

16ks

∂2|B|2
∂x2

− 1

8ks

∂2|B|2
∂y2

, (2.25a)

B2 =
ks

2
B2 − i

2
B

∂B

∂x
+

1

2ks

B
∂2B

∂y2
− 3

4ks

(
∂B

∂y

)2

, (2.25b)

B3 =
3k2

s

8
B3. (2.25c)

The double-derivative terms in (2.21b) are not needed for a solution of (2.20) within
its highest level of accuracy. However, the double-derivative terms in (2.21b) are
needed in order to reconstruct the surface elevation in (2.25a) within its highest level
of accuracy. The absence of the relevant double-derivative terms in Trulsen & Dysthe
(1996) thus represents a systematic error as far as full reconstruction in their paper is
concerned.

We note that (2.20) is formally valid for evolution up to time O(ω−1
s ε−2).

3. Modulation of monochromatic short wave by swell
In this section the simple situation of a monochromatic short wave modulated

by a monochromatic swell is considered. For this case one can find an approximate
analytical solution to the swell-modified NLS equation derived in § 2. It is shown that
this solution corresponds to an extended version of the classical result of Longuet-
Higgins & Stewart (1960), which predicts a local change in amplitude and phase of
a short wave which is influenced by a long wave.

Assuming that the short-wave field is dominated by one single wave component, the
free-wave complex amplitude B can be written as B(x, t) = As + B ′(x, t), where As =
aei(ξs−(1/2)(ksa)2ωs t) with a and ξs being two real constants and where B ′(x, t) contains
the modulation of the short waves because of the long wave. It is assumed that
ks |As | = O(ε), ks |B ′| = O(ε2) and that B ′ is varying on the same temporal and spatial
scales as the swell, e.g. |∇B ′| = O(ε3). Inserted into (2.20), the equation for B ′ takes
the form

∂B ′

∂t
+

ωs

2ks

∂B ′

∂x
+ iksAs

∂φl

∂x
+ iksB

′ ∂φl

∂x

+
3

4
As

∂2φl

∂x2
+

1

2
As

∂2φl

∂y2
+

iks

2ωs

As

∂2ηl

∂t2
= 0, z = 0 . (3.1)
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We choose the swell as a single-frequency wave component on deep water,

ηl(x, t) = A cos θl, φl(x, z, t) =
AΩ

K
eKz sin θl, (3.2)

where θl = Kxx + Kyy − Ωt + ξl is the phase function of the swell. By means of a
perturbation expansion, an approximate solution to (3.1), valid to O(ε3), is found in
the form

B ′ = ksAsA

[
i

(
Kx

K
− 1

2

√
K

ks

[
1 − K2

x

K2

]
− 1

4

Kx

ks

[
1 − K2

x

K2

])
sin θl

+
1

4

K

ks

[
3 −

K2
y

K2

]
cos θl + Aks

K2
x

4K2
cos(2θl)

]
. (3.3)

So far only contributions from the evolution equation itself (modifications to the
free-wave complex amplitude, B) have been considered. However we also need to
take the bound wave contributions into account. From (2.24)–(2.25c) we find

B̃ = − ks

4ω2
s

B
∂2ηl

∂t2
= ksAsA

K

4ks

cos θl, B2 =
ks

2
A2

s , B3 =
3k2

s

8
A3

s . (3.4)

Now, using (2.23), the surface elevation is found as

η =
1

2

[
(As + B ′ + B̃)ei(ksx−ωs t) + B2e

2i(ksx−ωs t) + B3e
3i(ksx−ωs t) + ∗

]
+ ηl

= a cos θs +
ksa

2

2
cos 2θs +

3k2
s a

3

8
cos 3θs + A cos θl

− aAks

(
Kx

K
− 1

2

√
K

ks

[
1 − K2

x

K2

]
− 1

4

Kx

ks

[
1 − K2

x

K2

])
sin θs sin θl

+ aAK

(
1 − 1

4

K2
y

K2

)
cos θs cos θl + a(Aks)

2 K2
x

4K2
cos θs cos(2θl), (3.5)

where θs = ksx − ωst − (1/2)(ksa)2ωst + ξs is the phase function of the main short
wave. If we now rewrite (3.5) into the form

η(x, t) = a′ cos (θs + χ) +
ksa

2

2
cos 2θs +

3k2
s a

3

8
cos 3θs + A cos θl, (3.6)

it is found that the modified amplitude of the short wave is

a′ = a

[
1 + AK

(
1 − 1

4

K2
y

K2

)
cos θl + (Aks)

2 K2
x

4K2

]
. (3.7)

The second term in (3.7) is an extension to two horizontal dimensions of the result
of Longuet-Higgins & Stewart (1960) and predicts that the short-wave amplitude is
increased close to the crests of the long wave and decreased close to the troughs of the
long wave. However, because of differences in the scaling assumptions between the
present approach and that of Longuet-Higgins & Stewart (1960), we also obtain an
additional term that predicts a constant increase in short-wave amplitude independent
of the long-wave phase. This term does not appear in Longuet-Higgins & Stewart
(1960).
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4. Statistics for linear random short waves modulated by a swell
In the previous section an approximate analytical solution which describes the

modification of a short wave due to a swell was found. If we ignore the mutual
interaction between different short-wave components, this result can be generalized
to the case of a random field of short waves influenced by a swell. Thus, we assume
that a given sea state consists of one system of random short waves and one
monochromatic swell. In the case of no swell it is well known that the sea surface is
Gaussian distributed with Rayleigh-distributed amplitude and uniformly distributed
phase. Because of the swell, however, these distributions may change. In the following
we will consider the distributions and statistical properties of the swell-modified sea.

We first address the distribution of the amplitude. On the basis of the amplitude
modification (3.7) found in the previous section, we write a′ = a(1 + c cos θl + d),
where c = AK(1 − K2

y /4K2) and d = (Aks)
2K2

x /4K2. We note that both c and d

are O(ε2). Assuming that a is Rayleigh distributed with parameter σ and that θl

is uniformly distributed on the interval [0, 2π), one can find the probability density
function (p.d.f.) of a′ in the form

fa′(z) =

∫ 1+d+c

1+d−c

z

(σy)2
exp

[
− z2

2(σy)2

]
1

π
√

c2 − (y − 1 − d)2
dy. (4.1)

We note that (4.1) can be written as

fa′(z) =

∫ 1+d+c

1+d−c

g(z, y)

π
√

c2 − (y − 1 − d)2
dy, (4.2)

where g(z, y) is the Rayleigh distribution with parameter σy. Representation (4.2)
can be used to express the p.d.f. as an asymptotic expansion in the small parameter
c:

fa′(z) =

∞∑
n=0

(c

2

)2n g(2n)(z, 1 + d)

(n!)2
, (4.3)

where g(2n) = ∂2ng/∂y2n. Since c = O(ε2), it is consistent to only consider the leading-
order term in (4.3). Thus, the swell-modified amplitude distribution takes the form

fa′(z) =
z

(σ [1 + d])2
exp

[
− z2

2(σ [1 + d])2

]
+ O(c2). (4.4)

In a similar manner, we can use the expression for the surface elevation (3.5), to find
the statistical properties of the surface elevation. Excluding the terms corresponding
to bound modes of the short wave only, we write (3.5) as

η = a[cos θs − b sin θl sin θs + c cos θl cos θs + d cos 2θl cos θs].

Here, a, θs and θl are assumed to be independent random variables; a is Rayleigh
distributed, while θs and θl are uniformly distributed on the interval [0, 2π). Using
that X = a cos θs and Y = a sin θs are independent and normally distributed with
mean 0 and variance σ 2, one can easily find that the first four moments of η take the
forms

E[η] = E[η3] = 0, E[η2] = σ 2

(
1 +

b2

2

)
, E[η4] = 3σ 4(1 + b2). (4.5)
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The expressions for the moments (4.5) are valid to O(ε2). Using (4.5) it is actually
found that the kurtosis become κ = E[η4]/E[η2]2 = 3 + O(b4), which means that to
the present order of accuracy there is no change in the kurtosis due to the swell.

Finally we find how the probability of freak waves is changed by the swell. A
common definition of a freak wave is a wave whose crest height exceeds 1.25 times
the significant wave height of the given sea state (Dysthe, Krogstad & Müller 2008).
Thus the freak wave probability can be defined as Pr(a > 5σ ). Using (4.4) and (4.5),
one obtains

Pr(a′ > 5σ
√

1 + b2/2) =

∫ ∞

5σ
√

1+b2/2

z

(σ [1 + d])2
exp

[
− z2

2(σ [1 + d])2

]
dz

= e−25/2

(
1 + 25d − 25

4
b2

)
. (4.6)

Thus, at first glance it appears that the swell changes the freak wave probability
slightly. However, when inserting the values for b and d , some cancellations occur,
and it is found that 25d − 25b2/4 = O(ε3). That is to say like for the kurtosis there
is no change in the freak wave probability to the order of accuracy considered here.
Thus, the simplified analysis in this section indicates that the effect of the swell on
the occurrence of extreme waves is a very small effect.

5. Numerical simulations
The findings of §§ 3 and 4 indicate that the swell has only minor impact on the

statistical distribution of short waves. However §§ 3 and 4 are based on simplified
conditions which do not include all effects described by the swell-modified equation
derived in § 2. In this section numerical simulations with the full equation are
performed, from which statistical information is extracted. The numerical simulations
show a somewhat stronger effect of the swell than what is indicated by the simplified
analysis in §§ 3 and 4. Furthermore, in contrast to §§ 3 and 4, the numerical simulations
show that the swell effect depends on the shape of the short-wave spectrum. This
indicates that nonlinear effects are important for the evolution of short waves
influenced by a swell.

5.1. Numerical method

To solve the swell-modified NLS equation numerically in a rectangular periodic
domain a Runge–Kutta scheme with variable time step (Matlab’s ode45 solver) is
employed for the integration in time. Because of the rectangular domain with periodic
boundary conditions all the spatial derivatives can be evaluated by using fast Fourier
transform routines, which makes the numerical solver quite efficient.

An alternative implementation based on the split-step method commonly used for
solving NLS-type equations (see e.g. Lo & Mei 1985, 1987; Weideman & Herbst
1986) was also tested. This alternative implementation produced identical results as
the Runge–Kutta scheme. However here the Runge–Kutta scheme turned out to be
more efficient for obtaining the same accuracy of the solution. The accuracy of the
numerical solution is controlled internally by the solver, in agreement with pre-chosen
relative and absolute error tolerances. The solver chooses the time step so that the
error in the solution at every time step is smaller than the error tolerances. Here we
chose the relative and absolute error tolerances to be 10−3 and 10−6 respectively. This
choice led to conservation of the wave action within 0.1 % of its initial value.
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A computational domain of nx ×ny = 128×128 points, which corresponds to about
64 × 64 characteristic short wavelengths, has been used to represent the free-wave
complex amplitude B . When reconstructing the surface elevation, including bound
modes, we have used a discretization of 768 × 384 points to represent the fully
reconstructed surface.

In the time domain we integrate the equation up to t = 100Tp , which is consistent
with the time horizon for which the equations are formally valid. This allows us to
describe the relatively rapid nonlinear interactions happening on the Benjamin–Feir
time scale. Processes taking place over larger times are however not considered here.

5.2. Initial condition

As initial condition, the free-wave complex amplitude is chosen according to a
spectrum of independent Fourier modes with random phases and amplitudes. The
amplitudes are chosen in order to give the desired wave spectrum. For all the results
presented here a JONSWAP wavenumber spectrum with a directional distribution
D(ξ ) has been employed. Thus in the wave vector plane (kx, ky) = (k cos ξ, k sin ξ ) the
spectrum has the form

S(kx, ky) =
α

k3
exp

[
−5

4
(k/ks)

−2

]
γ exp [−(

√
k/ks−1)2/(2σ 2

A)] D(ξ )

k
, (5.1)

where the directional spreading function D(ξ ) has the form

D(ξ ) =

Γ

(
N

2
+ 1

)
√

πΓ

(
N

2
+ 1

2

) cosN ξ. (5.2)

The parameter σA is equal to 0.07 for k � ks and 0.09 for k > ks , and the parameters
α, γ and N were varied to give the desired spectral shape and wave steepness. In

the numerical simulations the spectra were chosen so that ks

√
|B|2 = 0.1; i.e. the

steepness of the first-order reconstructed surface is set to 0.1. When accounting for
bound waves, the fully reconstructed surface thus has a slightly larger steepness.

It is well established that the statistical properties of a nonlinear wave field are
strongly related to the shape of the underlying wave spectrum. In particular, it has
been suggested that the two most important parameters for predicting large deviation
from linear statistics in a nonlinear wave field are the BFI, i.e. the ratio of wave
steepness to spectral bandwidth, and the degree of directional spreading, i.e. the crest
length, of the waves. In the present work the main objective is to investigate how
the presence of a swell might change the statistics of nonlinear short waves. Since
the statistics depends so strongly on the characteristics of the wave spectrum, a more
complete picture is given if the effect of the swell is investigated for several different
types of wave spectra for the short waves. In the following, results from four different
types of initial spectra will be presented, and the parameters γ and N are chosen so
that the four cases include both small and large values of both the BFI and the crest
length. In this way the four most important regions in the BFI/crest-length plane are
considered (see e.g. Gramstad & Trulsen 2007; Onorato et al. 2009a ,b). We anticipate
that these four cases are sufficient in order to characterize the dependence on the
spectral shape of the short waves.

The values of the different parameters in each case are given in table 1. In table 1
the BFI is defined in terms of the frequency bandwidth, BFI = εωs/Δω, where Δω

is calculated as the half-width at half-maximum of the frequency spectrum Sω(ω).
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Case γ N BFI Lc

A 2.5 10 0.90 2.84
B 6 10 1.34 2.81
C 2.5 840 0.90 27.8
D 6 840 1.34 25.0

Table 1. Parameters of the JONSWAP spectra for the four different scenarios.

The crest length Lc is defined as Lc = ks/Δky , where Δky is the half-width at
half-maximum in the ky direction of the wave vector spectrum S(kx, ky) (see, e.g.,
Gramstad & Trulsen 2007).

Cases A and B correspond to waves with a relatively broad directional spreading.
Such a broad directional spreading is shown to give statistical properties close to
what is expected according to linear (Gaussian) theory (Gramstad & Trulsen 2007).
Moreover it is expected that the results are only weakly affected by the BFI.

For cases C and D a much narrower directional spreading is applied. The choice
of N = 840 corresponds to a crest length of about 25 characteristic wavelengths. It
was suggested by Gramstad & Trulsen (2007) that there exists a qualitative transition
between long-crested waves (with large deviations from Gaussian statistics) and short-
crested waves (with small deviation from Gaussian statistics) for a crest length of
about 10 characteristic wavelengths. Cases C and D are thus well above the limit of
Lc = 10, and consequently larger deviations from Gaussian statistics are expected.

The swell can in principle be chosen as any solution in the form (2.22a)–(2.22b)
that is in agreement with the relevant scaling assumptions (2.2). Here, however, a
simple swell in the form of a single plane wave is employed, i.e. F (k) = πAδ(k − K )
in (2.22a) and (2.22b), which gives

ηl(x, t) = A cos (Kxx + Kyy − Ωt), (5.3a)

φl(x, z, t) =
AΩ

K

cosh [K(z + h)]

sinh [Kh]
sin (Kxx + Kyy − Ωt). (5.3b)

The choice of A, K and Ω = ω(K ) is restricted by the underlying scaling assumptions.
The values A/a = 1 and K/ks = 0.3 have been chosen, which correspond to
a swell with steepness AK = 0.03. Five different directions of swell propagation
relative to the short waves were considered: θ = 0◦, 45◦, 90◦, 135◦, 180◦, where
θ = arccos(ks · K/ksK) is the angle between the direction of swell propagation
and the main direction of propagation for the short waves. In addition simulations
without the swell are performed, for comparison with the various swell cases.

5.3. Results

Using the numerical solver, a Monte Carlo approach has been used to investigate
how the swell affects the statistical properties of the short waves. A large number of
simulations (with different random phases and amplitudes) have been performed for
all the different swell directions as well as for the case without swell; 5000 simulations
have been performed for each of the 24 swell/short-wave combinations (a total
of 120 000 runs). This turned out to be sufficient in order to have a satisfactory
convergence of the results presented in the following. The convergence is discussed
briefly below.

Since the numerical solution of (2.20) provides the free-wave complex amplitude
B , a subsequent reconstruction is needed in order to obtain the surface elevation
ηs . The contributions from bound waves needed in this reconstruction are given in
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Figure 1. Evolution of the freak wave probability for cases A–D, based on ensemble averaging
5000 realizations for each case. Simulations without the swell (solid line); the swell and short
waves propagating in the same direction, θ = 0 (dashed line). The horizontal line corresponds
to the Tayfun distribution.

(2.24)–(2.25c). All the following numerical results are obtained from the reconstructed
surface, including bound modes up to third order in the short-wave steepness.
However, when solving the induced mean flow problem (2.21), only the leading-order
terms in (2.21b) are accounted for. Under the slightly broader bandwidth assumption,
this formally gives a reconstruction of the zeroth harmonic bound wave consistent
only to O(ε2.5).

From the 5000 Monte Carlo runs for each swell direction and for each of the cases,
A–D, the statistics of the wave fields were recorded. Since the main goal here is to see
whether the presence of the swell modifies the wave statistics, the simulations without
the swell are used as a reference, and the simulations with the swell are compared
with the no-swell case.

As a measure of the intensity of large waves, we use the relative number of crests
that exceed five times the standard deviation of the surface, i.e. Pr(E > 5σ ), where E is

the upper envelope defined as E = η̄+ |B+B̃|+ |B2|+ |B3| and where σ =

√
(ηs − ηs)2

is the standard deviation of the surface. The probability Pr(E > 5σ ) corresponds to
the common definition of a freak wave as a wave whose crest height exceeds 1.25
times the significant wave height (Dysthe et al. 2008), and the probability Pr(E > 5σ )
is in the following referred to as the freak wave probability.

Figure 1 shows how the freak wave probability evolves in time for the four
cases, based on ensemble averaging 5000 realizations for each case. The solid lines
correspond to the no-swell case, while the dashed lines correspond to the case θ = 0
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Figure 2. The mean relative difference in freak wave probability between the cases with and
without the swell for case A, based on ensemble average over 5000 realizations. The dashed
lines indicate estimated 95 % confidence intervals for this mean difference.

in which the swell and short waves propagate in the same direction. The horizontal
lines correspond to the Tayfun distribution (narrow-band second-order theory).

In the upper row the two cases with a relatively broad directional distribution, cases
A and B, are shown. As expected for such short-crested seas, only small deviations
from the second-order theory are seen. A small effect of the BFI is seen, as case
B generally has a somewhat larger freak wave probability than case A. In general,
the same behaviour is seen both in the no-swell case and in the case with the swell;
however, a slightly larger value of the freak wave probability is seen for the swell-case.
The increase can be estimated to be in the neighbourhood of 10 %; however, our
results indicate that the exact percentage depends on the exact freak wave definition
used (here E > 5σ ).

For the longer-crested cases shown in the lower row in figure 1 a somewhat different
behaviour is seen. Here, the freak wave probability increases until a maximum
is reached after about 20Tp . This maximum is several times larger than what is
predicted by second-order theory. However, after the maximum is reached the freak
wave probability is decreasing and approaches values close to second-order theory
during the end of the evolution. This temporary increase in freak wave probability is
related to the rapid transition of the narrow initial spectrum into a broader spectrum
that takes place on the Benjamin–Feir time scale. During this transition more freak
waves are produced, before the number of freak waves decreases and stabilizes when
the spectrum has evolved into a broader spectrum. A clear effect of the BFI is also
seen in this case, as the case with largest BFI (case D) reaches a maximum more than
twice the magnitude of case C. In these cases it is clear that the swell hardly modifies
the freak wave probability at all, and the exact effect of the swell may even be to
lower the freak wave probability by an insignificant amount.

In figures 2–5 the effect of the swell is shown in more detail. The solid lines
show the mean relative difference in freak wave probability (in per cent) between
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Figure 3. Same as figure 2 for case B.
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Figure 4. Same as figure 2 for case C.

the various swell cases and the no-swell case. The broken lines indicate approximate
95 % confidence intervals for the mean difference based on the 5000 realizations in
each case. We have verified that the number of realizations employed is sufficient in
order to obtain statistically stable results. In figure 6 an example of the convergence
with respect to ensemble size is shown for case D with θ = 0◦ at t = 100Tp . The
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Figure 6. Mean relative difference in freak wave probability for case D, θ = 0◦ at t = 100Tp

as a function of the number of random runs used to calculate the mean.

figure shows a somewhat slow convergence; however using 5000 runs seems to be
sufficient.

For the two short-crested cases (A and B) in figures 2 and 3 we note an increase in
freak wave occurrence when a swell is present. Our results suggest that the increase
is about 5–20 % and definitely less than 30 %. We have found that the exact values
of these percentages depend on the freak wave definition used; we show results only
for the definition E > 5σ .

For the two long-crested cases (C and D) in figures 4 and 5 the effect of the swell
is less pronounced. The confidence intervals for the mean include zero during parts
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of the evolution; thus the average swell effect might be close to insignificant in these
cases.

Taking into account that the two long-crested cases (C and D) most probably have
unrealistically long crest lengths, our results therefore suggest that a swell is likely
to have the potential of increasing the freak wave occurrence in more realistic seas
(cases A and B).

The modification of freak wave occurrence due to swell does not seem to be
sensitive to the value of the BFI, regardless of the crest length.

The most striking result seen in figures 2–5 is the dependence on the direction of
swell propagation. There is clear evidence that the confidence interval is narrowest,
and the change in mean freak wave occurrence is minimum, when the swell is
orthogonal (θ = 90◦) to the wind sea. Thus the speculation made by Lechuga (2006)
that the swell and wind sea at right angles should not provoke enhanced freak wave
occurrence in the wind sea indeed seems to hold, although we have arrived at this
conclusion through a completely different path. This does however not imply that
wind waves are not modified by an orthogonal swell; in fact, our extended version of
the result of Longuet-Higgins & Stewart (1960) does predict modulation of the short
waves in the orthogonal case, and as suggested by Henyey et al. (1988) and Naciri &
Mei (1994), a wind sea will in any case feel the apparent gravity of a swell regardless
of its direction.

6. Conclusions
By use of the swell-modified NLS equation derived in § 2 the effect of a swell on

irregular and directional short waves has been investigated both through simplified
analytical solution of the equations and through numerical Monte Carlo simulations
of the full equations.

The simplified, linearized analysis in § 4 arrives at the conclusion that a swell hardly
changes the statistical properties of the short waves at all.

In § 5 results from the Monte Carlo simulations have been presented and can be
summarized as follows.

For short-crested seas we anticipate that a swell can increase the probability of freak
waves by 5–20 % compared with a corresponding sea without swell. For long-crested
seas we anticipate that a swell has a much smaller effect on the probability of freak
waves and not necessarily that of increasing the probability of freak waves.

For orthogonal swell and short waves the modification of the number of freak
waves is much less than for non-orthogonal swell and short waves.

We are grateful for the hospitality of the Department of Signal Theory and
Communications at the Polytechnic School of the University of Alcalá in Spain for
hosting K. T. for a sabbatical year and O. G. for a couple of visits during the
development of this paper.
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